Innovation for Our Energy Future

Single-phase and boiling liquid jet impingement cooling in power electronics

Sreekant Narumanchi

Email: sreekant_narumanchi@nrel.gov

Phone: 303-275-4062

National Renewable Energy Laboratory

FY05 Budget: \$300K FY06 Budget: \$300K

Project Duration: FY05 to FY07

FreedomCAR APEEM FY05 Wrap-up/FY06 Kick-off Meeting Oak Ridge National Laboratory National Transportation Research Center

November 1, 2005

Where Does This Project Fit?

What is This Project?

- Thermal management of power electronics components (e.g. IGBTs)
- Exploring liquid jet impingement cooling
 - Different impingement configurations
 - Single-phase and boiling jets
 - Empirical correlations
 - CFD simulations
 - Experiments on prototype structure
 - Heat transfer enhancements
 - Experimental demonstration on an inverter

Technical Approach

- Empirical correlations for both single-phase and boiling jets
- CFD simulations of single-phase and boiling jets
- Experimental validation of CFD simulations with existing experimental data
- IGBT package simulations for both single-phase jets (with water and glycol-water mixture) and boiling jets (with water)

Goal

- Establish a liquid cooling solution which dissipates up to 200 W/cm² from the silicon die in the IGBT package
- Preferably use glycol-water mixture at 105 C inlet temperature in the single-phase regime
- Maintain the maximum temperature in the silicon die below 125 C

Approach and accomplishments for FY05

- User defined function (UDF) for nucleate boiling has been implemented and customized in the CFD code FLUENT for jet impingement applications
- A spreadsheet-based modeling tool, based on empirical correlations, for both single-phase and boiling jets has also been developed
- Numerical simulations also performed to study jet impingement cooling of IGBT package (Semikron inverter)
 - Baseline conditions demonstrated under which the program goals can be met with single-phase glycol-water jets

Different jet configurations

Free-surface jet (Womac et al., 1993) configuration

Submerged jet (Womac et al., 1993) configuration

Different jet configurations

Confined submerged jet (Garimella and Rice, 1995) configuration

Comparison between CFD results and experimental results

Configuration	Problem parameters	h _{avg} from correlations (W/m ² K)	h _{avg} from Fluent (W/m ² K)	% difference between Fluent and correlation
Single circular submerged jet (Womac et al. 1993)	v=3 m/s, d=3.1mm, S _{NP} =4d, Re _d = 9300	27300	26400	3
	v=15 m/s, Re _d = 46400	69300	81400	16
Single circular free-surface jet (Womac et al. 1993)	v=1 m/s, d=3.1 mm, S _{NP} =4d, Re _d = 3100	11500	14000	20
	v=3 m/s, Re _d = 9300	19600	22500	14
	v=15 m/s, Re _d = 46400	45700	61000	29
Single circular submerged and confined jet (Garimella and Rice 1995)	v=1.3 m/s, d=3.18 mm, S _{NP} =4d, Re _d =4100	18300	19200	5
	$v=3.27 \text{ m/s}, Re_d = 10300$	34800	34800	0
	v=7.0 m/s, Re _d = 22100	59100	54500	8

Half bridge with IGBTs

Low thermal resistance IGBT structure simulation

Temperature contours
90 W/cm²; T_{max}= 125⁰C; T_{coolant}= 105⁰C
(Glycol-Water mixture)

Heat transfer results for the different cases

		-WATER CTURE	WATER			
	90 W/cm ²	2 0 0 W/cm ²	90 W/cm ²	200 W/cm ²		
Jet velocity, m/s	8	20	8	20		
T _{INLET} , °C	105	105	105	105		
T _{MAX} , °C	125	135	119	127		
h _{COPPER} , W/m ² K	39,000	75,700	74,200	157,300		
h _{ALUMINUM} , W/m ² K	19,800	40,500	37,100	76,500		

NREL National Renewable Energy Laboratory

Summary for single phase jets

- CFD predictions compare well with available experimental data in the literature for submerged jets
- Glycol-water jet impingement simulation of the low thermal resistance IGBT structure reveals
 - $q = 90 \text{ W/cm}^2$; v = 8 m/s; $T_{inlet} = 105^{\circ}\text{C}$; $T_{max} = 125^{\circ}\text{C}$
 - $q = 200 \text{ W/cm}^2$; v = 20 m/s; $T_{inlet} = 105^{\circ}\text{C}$; $T_{max} = 135^{\circ}\text{C}$
- With surface enhancements and pulsating/selfoscillating jets, there is a potential for removing 150 to 200 W/cm² with velocities less than 10 m/s

Numerical (CFD) simulations of nucleate boiling in turbulent impinging jets

- Based on the Eulerian multiphase model proposed by Podowski et al. (1997)
 - This involves numerically solving the mass, momentum and energy conservation equations for different phases
 - A number of closure relations for interfacial terms between liquid and vapor
- User defined function (UDF) for nucleate boiling in impinging jets has been customized and implemented in FLUENT

Validation with experimental study of Katto and Kunihiro (1973) with submerged water jets

Energy Laboratory

Comparison of boiling curve obtained from experiments and CFD

First time
a CFD code is
being validated
with this
experimental
data

Animations of vapor formation

 50 W/cm^2 100 W/cm^2

Water jet; d=1.6mm; v = 2m/s; $T_{inlet} = 97 C$; $T_{sat} = 100 C$

Validation with experimental results of Zhou and Ma (2004) for submerged R113 jets

Comparison of boiling curve obtained from experiments and CFD

Numerical simulations of IGBT package cooling with boiling jets

Water jet; $T_{inlet} = 105 \text{ C}$; $T_{sat} = 108 \text{ C}$; v = 2 m/s

Heat dissipation in the silicon die

Animations of vapor volume fraction

45 W/cm²

90 W/cm²

Water jet; $T_{inlet} = 105 \text{ C}$; $T_{sat} = 108 \text{ C}$; v = 2 m/s

Impact of boiling

 $q = 100 \text{ W/cm}^2$ $Twall_{avg} = 113C \text{ (with boiling)}$ $Twall_{avg} = 135 \text{ C (without boiling)}$

22

Impact of boiling

Water jet; $T_{inlet} = 105 \text{ C}$; $T_{sat} = 108 \text{ C}$; v = 2 m/s

$$q = 45 \text{ W/cm}^2$$

 $T\text{wall}_{avg} = 121.5 \text{ C (with boiling)}$
 $T\text{wall}_{avg} = 123.4 \text{ C (without boiling)}$

$$q = 90 \text{ W/cm}^2$$

 $Twall_{avg} = 139.3 \text{ C (with boiling)}$
 $Twall_{avg} = 142.0 \text{ C (without boiling)}$

Summary and conclusions for boiling jets

- UDF for nucleate boiling has been customized for jet impingement applications and implemented in FLUENT
 - Code has been validated against experimental data
- The impact of boiling has been explored
- Saturated flourinerts (FC72, 77, 84) and OS-10 yield low critical heat fluxes (CHF) (< 60 W/cm² for velocities as high as 8 m/s). Water yields highest CHF values
 - An appropriate working fluid in the boiling regime for power electronics applications needs to be investigated

Project motivation for FY06

- Glycol-water mixture will be readily accepted as a working fluid in the single-phase regime
- Very high velocities would be required to meet program requirements with single-phase jets
- Enhancements in heat transfer need to be explored
- Self-oscillating/pulsating jets and surface enhancements have the potential to enhance the heat transfer coefficients considerably (~ 100 %)

Approach for FY06

- Explore single-phase glycol-water jets with enhancements in heat transfer
- Visualization tests with self-oscillating nozzles obtained from a company
- Experiments on a prototype structure (heat transfer)
- After data analysis and proof of enhancements, plan for tests in an actual inverter

Animations of self-oscillating jets

05 19:31:58 PLAY 003223 FWD30 0001.0740sec

Timeline for FY06

FY06 Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Complete	all visuali	zation test	ts								
			prototype ting jets (
			ests with			are					
							ype structuets (100%)				Annual report
							optimum co		ion		
						Lucitary			art tests o		

Key task

Milestone/ Deliverable

Barriers/Challenges

- Issues related to erosion and package stresses may have to be addressed
- The reliability of the jet impingement cooling system will have to be demonstrated

Interactions and Collaborations

NREL National Renewable Energy Laboratory

Questions

